Human Serum Albumin
Phân loại:
Thành phần khác
Mô tả:
Human Serum Albumin là gì?
Albumin là protein quan trọng nhất của huyết thanh, chiếm 58-74% lượng protein toàn phần. Albumin có vai trò trong việc duy trì áp lực thẩm thấu keo trong huyết tương, giữ cho nước không rò rỉ ra ngoài mạch máu. Albumin cung cấp axit amin trong quá trình tổng hợp protein ở ngoại vi. Khi người bệnh đang điều trị, albumin có thể liên kết, vận chuyển các chất có phân tử lượng nhỏ như bilirubin, hormon steroid, acid béo và những hoạt chất thuốc trong máu đi khắp cơ thể.

Trong cơ thể chúng ta, gan là cơ quan duy nhất sản xuất Albumin và cũng rất nhạy cảm với tổn thương ở gan. Nồng độ Albumin thể hiện rõ tình trạng chức năng của gan, albumin giảm khi gan bị suy yếu ở người mắc bệnh thận, suy dinh dưỡng hoặc viêm nhiễm,... Đây là một sự gia tăng tương đối và xảy ra khi mà khối lượng huyết tương giảm.
Albumin liên kết với nước, cation (như Ca2 +, Na + và K +), axit béo, hormone, bilirubin, thyroxine (T4) và dược phẩm (bao gồm cả barbiturat). Albumin chiếm khoảng 50% tổng hàm lượng protein ở người khỏe mạnh.
Điều chế sản xuất Human Serum Albumin
Cách điều chế ra huyết thanh là quá trình cho máu đông lại một thời gian nhất định. Quá trình tiếp theo là đun ống bằng que thử như vậy sẽ loại bỏ máu đông, tiếp đến là ly tâm ống. Các quá trình trên hoàn tất, chúng ta thu được huyết thanh.
Cơ chế hoạt động của Human Serum Albumin
Albumin giúp tăng thể tích huyết tương tuần hoàn, giảm độ nhớt, giảm sự cô đặc của máu. Albumin như một protein có thể vận chuyển lưu thông, liên kết các vật liệu, thuốc độc hại, tự nhiên và trị liệu. Albumin người chiếm hơn 50% tổng protein trong huyết tương, thành phần này chiếm khoảng 10% hoạt động tổng hợp protein của gan. Albumin 25% ở người có tác dụng tăng cường tương ứng.
Dược động học:
Dược lực học:
Xem thêm
Chitosan là gì?
Chitosan là dẫn xuất N-deacetylated của Chitin – một Polysaccharid có nhiều trong nấm, nấm men, các động vật không xương sống ở biển và động vật chân đốt. Chất Chitin được dùng để sản xuất ra Chitosan.
Chitin là một Polysaccharide mạch thẳng, là một Polymer của nhiều đơn vị N-acetyl-glucosamine nối với nhau nhờ cầu β-1,4glucoside. Vì Chitin tự nhiên có trong vỏ tôm thường liên kết với Protein, Lipid, Canxi, sắc tố… nên thường phải làm sạch trước khi sử dụng để sản xuất Chitosan.

Hai bước chính để làm sạch Chitin gồm khử khoáng bằng Acid và khử Protein bằng kiềm hoặc một Enzyme protease. Chitosan liên quan chặt chẽ với Chitin, nung nóng Chitin trong dung dịch xút đậm đặc, các gốc Acetyl bị khử hết và Chitin chuyển thành Chitosan.
Trong thiên nhiên, Chitin còn hiện diện dưới nhiều hình thức: Khá tinh khiết (sâu bướm), trong các lớp rất mỏng (cánh bướm, với hiệu ứng màu tuyệt vời), cùng với các protein tạo thành sclerotin (chất chính trong bộ xương ngoài của côn trùng)…
Chitosan có khả năng tạo thành màng mỏng, kết hợp với nước, chất béo, ion kim loại, có tính kháng khuẩn…, vì vậy được ứng dụng trong nhiều lĩnh vực khác nhau, đặc biệt là trong dược phẩm, mỹ phẩm.
Điều chế sản xuất Chitosan
Chitin dễ dàng thu được từ vỏ cua, vỏ tôm và sợi nấm.
- Cách đầu tiên, sản xuất Chitin có liên quan đến các ngành công nghiệp thực phẩm, điển hình là ngành đóng hộp. Sản xuất Chitin và Chitosan phần lớn dựa vào vỏ tôm và vỏ cua được lấy về từ các nhà máy đóng hộp. Việc sản xuất Chitosan từ vỏ động vật giáp xác (được xem như dạng chất thải của ngành công nghiệp thực phẩm) mang tính khả thi rất cao về mặt kinh tế.
- Cách thứ hai, sản xuất phức hợp Chitosan-glucan đi liền với quá trình lên men, tương tự như việc sản xuất Axit citric từ nấm Aspergillus niger, Mucor rouxii và Streptomyces bằng cách xử lý kiềm và tạo ra phức hợp trên.
Chất kiềm loại bỏ protein và đồng thời có thể đẩy nhóm chức acetyl ra khỏi hợp chất Chitin. Tùy thuộc vào nồng độ kiềm, một số glycans hòa tan được loại bỏ. Việc sử dụng vỏ động vật giáp xác chủ yếu để loại bỏ protein và hòa tan một lượng lớn Calcium carbonate có trong vỏ cua. Hợp chất Chitin đã bị khử Acetyl sẽ được tạo ra trong dung môi 40% Sodium hydroxide ở nhiệt độ 1.200C liên tục 1 tới 3 giờ đồng hồ. Cách xử lý này tạo ra 70% Chitosan đã khử Acetyl.
Cơ chế hoạt động
Sự xuất hiện của các vi sinh vật kháng kháng sinh dẫn đến nhu cầu cấp thiết để phát triển các loại kháng sinh thay thế. Các vi hạt Chitosan (CM), có nguồn gốc từ Chitosan, đã được chứng minh là làm giảm sự phát tán của vi khuẩn E. coli O157: H7, cho thấy khả năng sử dụng CM như một chất kháng khuẩn thay thế. Tuy nhiên, cơ chế cơ bản của CM trong việc giảm sự phát triển của mầm bệnh này vẫn chưa rõ ràng.

Để hiểu phương thức hoạt động, cần nghiên cứu các cơ chế phân tử của hoạt động kháng khuẩn của CM bằng phương pháp in vitro và in vivo. CM là một chất diệt khuẩn hiệu quả với khả năng phá vỡ màng tế bào. Các thử nghiệm liên kết và nghiên cứu di truyền với một chủng đột biến ompA đã chứng minh rằng Protein màng ngoài OmpA của E. coli O157: H7 rất quan trọng đối với liên kết CM. Hoạt động liên kết này được kết hợp với tác dụng diệt khuẩn của CM.
Điều trị CM có hiệu quả làm giảm sự phát tán của E. coli gây bệnh trong tử cung so với điều trị kháng sinh. Vì độc tố Shiga được mã hóa trong bộ gen của xạ khuẩn thường biểu hiện quá mức trong quá trình điều trị bằng kháng sinh, nên thường không khuyến cáo điều trị bằng kháng sinh vì nguy cơ cao mắc hội chứng urê huyết tán huyết.
Tuy nhiên, xử lý CM không tạo ra vi khuẩn hoặc độc tố Shiga ở E. coli O157: H7, cho thấy CM có thể là một ứng cử viên tiềm năng để điều trị các bệnh nhiễm trùng do mầm bệnh này gây ra. Công việc này thiết lập một cơ chế cơ bản, nhờ đó CM phát huy hoạt tính kháng khuẩn, cung cấp cái nhìn sâu sắc về việc điều trị các bệnh do nhiều mầm bệnh gây ra, bao gồm cả vi sinh vật kháng kháng sinh.
L-valine là gì?
L-valine là đồng phân đối hình L của valine, hoạt chất có vai trò như một chất dinh dưỡng; vi chất dinh dưỡng; chất chuyển hóa tảo; chất chuyển hóa Saccharomyces cerevisiae; chất chuyển hóa ở người; chất chuyển hóa Escherichia coli và chất chuyển hóa của chuột. Vai trò của L-Valine là axit amin thiết yếu, có hoạt tính kích thích. Hoạt chất này thúc đẩy sửa chữa mô và phát triển cơ bắp. Thành phần này là một axit amin họ pyruvate có thể tạo protein, một valine và một axit amin L-alpha. Hoạt chất là một cơ sở liên hợp của một L-valinium, axit liên hợp của một L-valinat. Đồng thời L-valine cũng là một chất đồng phân đối quang của một D-valine, đồng phân của một zwitterion L-valine.
Điều chế sản xuất
Thủy phân protein, được tổng hợp bằng phản ứng của amoniac với axit alpha-chloroisovaleric. Các axit amin được kết hợp trong protein của động vật có vú là axit amin alpha, ngoại trừ proline, là axit alpha-imino. Điều này có nghĩa là chúng có một nhóm cacboxyl, một nhóm nitơ amin và một chuỗi bên được gắn với một cacbon alpha trung tâm.

Sự khác biệt về chức năng giữa các axit amin nằm trong cấu trúc của chuỗi bên của chúng. Ngoài sự khác biệt về kích thước, các nhóm phụ này mang điện tích khác nhau ở pH sinh lý (ví dụ, không phân cực, không tích điện nhưng có cực, tích điện âm, tích điện dương); một số nhóm kỵ nước (ví dụ, chuỗi phân nhánh và các axit amin thơm) và một số ưa nước (hầu hết các nhóm khác). Các chuỗi bên này có vai trò quan trọng đối với cách thức ổn định các bậc cao hơn của cấu trúc protein và là những bộ phận thân thiết của nhiều khía cạnh khác của chức năng protein.
Cơ chế hoạt động
L-valine được hấp thụ từ ruột non bằng quá trình vận chuyển tích cực phụ thuộc natri. Nồng độ trong máu và mô của các axit amin chuỗi nhánh (BCAA) bị thay đổi do một số bệnh và trạng thái sinh lý bất thường, bao gồm bệnh đái tháo đường, rối loạn chức năng gan, đói, suy dinh dưỡng protein-calo, nghiện rượu và béo phì. Những điều kiện này và các điều kiện khác đôi khi tạo ra những thay đổi mạnh mẽ trong các bể BCAA trong huyết tương.
Mặc dù các axit amin tự do hòa tan trong dịch cơ thể chỉ chiếm một tỷ lệ rất nhỏ trong tổng khối lượng axit amin của cơ thể, nhưng chúng rất quan trọng đối với việc kiểm soát dinh dưỡng và trao đổi chất của protein trong cơ thể... Mặc dù ngăn huyết tương dễ lấy mẫu nhất, nhưng nồng độ của hầu hết các axit amin cao hơn trong các bể nội bào của mô.
Thông thường, các axit amin trung tính lớn, chẳng hạn như leucine và phenylalanin, về cơ bản ở trạng thái cân bằng với huyết tương. Những thứ khác, đặc biệt là glutamine, axit glutamic và glycine, tập trung nhiều hơn từ 10-50 lần trong vùng nội bào. Sự thay đổi chế độ ăn uống hoặc tình trạng bệnh lý có thể dẫn đến những thay đổi đáng kể về nồng độ của các axit amin tự do riêng lẻ trong cả hồ huyết tương và mô.
Sau khi ăn vào, protein bị biến tính bởi axit trong dạ dày, nơi chúng cũng bị phân cắt thành các peptit nhỏ hơn bởi enzim pepsin, được kích hoạt bởi sự gia tăng axit trong dạ dày xảy ra khi cho ăn. Sau đó, protein và peptit sẽ đi vào ruột non, nơi các liên kết peptit bị thủy phân bởi nhiều loại enzym. Các enzym đặc hiệu liên kết này bắt nguồn từ tuyến tụy và bao gồm trypsin, chymotrypsins, elastase và carboxypeptidases.
Sau đó, hỗn hợp kết quả của các axit amin tự do và các peptit nhỏ được vận chuyển vào các tế bào niêm mạc bởi một số hệ thống chất mang đối với các axit amin cụ thể và đối với các di - và tri-peptit, mỗi loại cụ thể đối với một số cơ chất peptit giới hạn. Sau khi thủy phân nội bào của các peptit được hấp thụ, các axit amin tự do sau đó được tiết vào máu cổng bởi các hệ thống chất mang cụ thể khác trong tế bào niêm mạc hoặc tiếp tục được chuyển hóa trong chính tế bào. Các axit amin được hấp thụ sẽ đi vào gan, nơi một phần của các axit amin được tiếp nhận và sử dụng; phần còn lại đi vào hệ tuần hoàn và được sử dụng bởi các mô ngoại vi.
Sự tiết protein vào ruột vẫn tiếp tục ngay cả trong điều kiện cho ăn không có protein, và lượng nitơ mất đi trong phân (tức là nitơ bị mất khi vi khuẩn trong phân) có thể chiếm 25% lượng nitơ mất đi bắt buộc. Trong hoàn cảnh ăn kiêng này, các axit amin được tiết vào ruột dưới dạng thành phần của các enzym phân giải protein và từ các tế bào niêm mạc bong tróc là nguồn axit amin duy nhất để duy trì sinh khối vi khuẩn đường ruột... Các con đường mất axit amin nguyên vẹn khác là qua nước tiểu và qua da và rụng tóc. Những tổn thất này là nhỏ so với những tổn thất được mô tả ở trên, nhưng vẫn có thể có tác động đáng kể đến các ước tính về yêu cầu, đặc biệt là trong tình trạng dịch bệnh.
Đạm thủy phân từ men bia là gì?
Đạm thủy phân từ men bia có tên quốc tế là Protein hydrolyzates và có công thức phân tử là C29H29N3O3S. Đạm thủy phân từ men bia là chất thu được từ quá trình thủy phân axit, kiềm hoặc enzyme của saccharomyces cerevisiae, kết quả thu được bao gồm chủ yếu là axit amin, peptide và protein. Đạm thủy phân từ men bia có thể chứa các tạp chất chủ yếu là carbohydrate và lipid cùng với một lượng nhỏ các chất hữu cơ có nguồn gốc sinh học.

Điều chế sản xuất đạm thủy phân từ men bia
Thành phần và chất lượng của đạm men bia
Men bia được lên men để thu được sinh khối có giá trị tức có thể được sử dụng làm nguồn protein. Thông thường, hàm lượng protein của tế bào men bia có thể chiếm 40% - 60% trọng lượng khô. Dưới tác dụng của việc chuẩn bị hoặc chế biến thực phẩm, phần phi protein trong tế bào men bia được loại bỏ hoặc loại bỏ một phần, để có thể thu được các sản phẩm của protein men bia với số lượng lớn. Tóm lại, những protein men bia này chứa nhiều axit amin và cũng có một lượng nhỏ khoáng chất, lipid.
Sản xuất đạm men bia thủy phân
Việc sản xuất đạm men bia là một cách khả thi để giải quyết thách thức về sự gia tăng đáng kể nhu cầu protein trên toàn thế giới. Việc gia tăng sinh khối men bia và cô đặc protein bằng cách lên men chất thải nông nghiệp là một trong những phương pháp hiệu quả nhất để sản xuất protein men bia nhờ tỷ lệ tái sản xuất cao và hiệu suất cao.

Phương pháp xử lý dòng chảy thủy nhiệt liên tục được gọi là “thủy phân nhanh” đã được triển khai để thu hồi protein và xử lý nấm men. Thức ăn thừa chứa 1-15% trọng lượng men được thủy phân ở nhiệt độ từ 160 đến 280°C trong thời gian lưu rất ngắn 10 ± 2 giây. Sử dụng 10% trọng lượng men bia ở 240°C, 66.5% carbon, 70.4% nitơ và 61% sinh khối men bia tổng thể được hòa tan trong dịch thủy phân lỏng. Dịch thủy phân lỏng có 63.1% axit amin được phân tích trong thức ăn lên men được thử nghiệm làm chất dinh dưỡng để nuôi cấy vi khuẩn E. coli trong lò phản ứng sinh học. Nồng độ E. coli ở trạng thái ổn định lần lượt là 1,18 g/L và 0,93 g/l khi sử dụng dịch thủy phân lỏng và chiết xuất men bia thương mại. Từ đó có thể nghĩ rằng đạm thủy phân từ men bia có thể sử dụng cho quá trình phát triển của sinh vật.
Cơ chế hoạt động
Men bia là các vi sinh vật đơn bào được sử dụng chủ yếu trong dinh dưỡng vì tác dụng có lợi của chúng nhờ vào các thành phần tế bào và các hợp chất hoạt tính sinh học do chúng tạo ra, trong đó có mannan, β-glucans, nucleotides, mannan oligosacarides và các loại khác. Các tác dụng có lợi của đạm thủy phân từ men bia là khả năng điều chỉnh hệ vi sinh vật đường ruột, kích thích sự phát triển của vi khuẩn có lợi và giảm sự xâm nhập của mầm bệnh. Mặc dù việc sử dụng tế bào men bia sống làm chế phẩm sinh học trong thực phẩm chăn nuôi gia cầm đã được xem xét nhưng lại có ít thông tin về các sản phẩm có nguồn gốc từ men bia. Tuy nhiên, vẫn còn nhiều lĩnh vực cần được nghiên cứu để hiểu rõ hơn và tháo gỡ bí mật về những tác động cũng như cơ chế hoạt động của đạm men bia thủy phân.

Dihydroxyacetone là gì?
Dihydroxyacetone (DHA) – một chất tự làm da ngăm được dùng trong mỹ phẩm nhằm mang lại bề mặt da được phủ màu mà không có nhu cầu phơi nắng. Nó cũng là chất bảo vệ cơ thế trước tia UV và chất tạo màu.

Vì là một chất tự làm da ngăm có tác dụng với các amino acid tìm thấy trên lớp thượng bì của da, hiệu quả của Dihydroxyacetone chỉ kéo dài trong vài ngày vì màu mà nó mang lại bị nhạt do sự lột da tự nhiên của các tế bào bị nhuộm màu.
Theo các ghi nhận, Dihydroxyacetone hoạt động tốt nhất trong da có môi trường acid nhẹ. Khi kết hợp DHA với chất lawsone, nó trở thành chất bảo vệ da trước tia UV loại I (được chấp thuận).
Năm 1973, FDA khẳng định Dihydroxyacetone an toàn và thích hợp dùng trong thuốc hay mỹ phẩm được thêm vào nhằm tạo màu da, và không cần có giấy phép cho việc thêm chất tạo màu này.
Điều chế sản xuất Dihydroxyacetone
DHA lần đầu tiên được các nhà khoa học Đức công nhận là chất tạo màu da vào những năm 1920. Thông qua việc sử dụng nó trong tia X nó được ghi nhận là làm cho bề mặt da chuyển sang màu nâu.
Vào những năm 1950, Eva Wittgenstein tại Đại học Cincinnati đã nghiên cứu sâu hơn với dihydroxyacetone. Các nghiên cứu của bà liên quan đến việc sử dụng DHA như một loại thuốc uống để hỗ trợ trẻ em bệnh dự trữ glycogen. Những đứa trẻ nhận được một lượng lớn DHA qua đường uống, và đôi khi đổ chất này lên da của chúng. Các nhân viên y tế nhận thấy rằng da chuyển sang màu nâu sau vài giờ tiếp xúc với DHA.
Tác dụng làm nâu da này không độc hại, và là kết quả của một phản ứng Maillard. DHA phản ứng hóa học với axit amin trong protein keratin, thành phần chính của bề mặt da. Các axit amin khác nhau phản ứng với DHA theo những cách khác nhau, tạo ra các tông màu khác nhau từ vàng đến nâu. Các sắc tố tạo thành được gọi là melanoidins. Chúng có màu sắc tương tự như hắc tố, chất tự nhiên ở lớp da sâu hơn có màu nâu hoặc "rám nắng", do tiếp xúc với tia UV.
DHA có thể được điều chế, cùng với glyceraldehyd, bởi quá trình oxy hóa nhẹ của glycerol, ví dụ với hydrogen peroxide và một Sắt muối như chất xúc tác. Nó cũng có thể được điều chế với năng suất và độ chọn lọc cao ở nhiệt độ phòng từ glycerol sử dụng cation palladium-dựa trên chất xúc tác với oxy, không khí hoặc benzoquinone hành động như chất đồng oxy hóa.
Cơ chế hoạt động của Dihydroxyacetone
Dihydroxyacetone liên kết với keratin trong lớp sừng (lớp trên cùng của tế bào da chết) để tạo thành phản ứng cho màu nâu. Điều này khiến da có vẻ rám nắng.
Về cơ bản, đây là một dạng nhuộm, và dihydroxyacetone thực ra là một loại đường ba carbon phản ứng với các axit amin hoặc protein trong da. Nó chỉ phản ứng với protein ở lớp ngoài cùng của da. Khi phản ứng với những axit amin này, nó kích hoạt phản ứng glucose hóa gọi là phản ứng Maillard. Phản ứng dẫn đến sản sinh các sản phẩm giống melanin này để tạo ra màu nâu của da. Melanoids, tên của hợp chất thu được, không phải là melanin - sắc tố nâu-đen tự nhiên trong da - nhưng trông rất giống.
Fish collagen là gì?
Xét về nguồn gốc, hiện nay trên thị trường đang bày bán hai loại collagen: Collagen có nguồn gốc từ động vật trên cạn và một loại khác là collagen có nguồn gốc từ cá (fish collagen).
Fish collagen thuộc dạng collagen loại 1, là loại collagen quan trọng cho làn da đẹp và xương chắc khỏe. Đây là một loại protein được thủy phân từ da cá bằng enzyme đặc hiệu, có kích thước phân tử nhỏ hơn các loại collagen khác giúp cơ thể hấp thu dễ dàng hơn.

Fish collagen có kích thước phân tử chỉ bằng 1/60 so với collagen thông thường. Chính vì kích thước nhỏ như vậy nên khi vào đến dạ dày, fish collagen không cần nhiều thời gian để thủy phân hơn so với collagen thông thường. Từ đó nó cũng mang lại hiệu quả vượt trội hơn, khả năng hấp thu nhanh hơn gấp 5-7 lần so với collagen thông thường.
Ngoài ra, fish collagen hầu như không chứa hoặc chứa rất ít chất béo, thích hợp với tất cả mọi người kể cả người ăn kiêng.
Bên cạnh đó, do đặc tính phải chịu áp lực của dòng nước nên so với động vật trên cạn, da cá sẽ có độ đàn hồi chắc hơn nhiều. Vì thế, collagen được chiết xuất từ cá biển sâu có độ đàn hồi và độ dẻo dai rất cao.
Trong 10 gram fish collagen có chứa 45 calo, 9,4gram protein, 10 miligam natri, 0,07 miligam kali, 0,05 miligam canxi, 0,04 miligam sắt.
Điều chế sản xuất fish collagen
Fish collagen được chiết xuất thông qua một quá trình thủy phân phức tạp từ da và vảy cá, chúng hầu như không gặp phải các vấn đề về vệ sinh, không mang các vi khuẩn, virus truyền nhiễm từ động vật.

Cơ chế hoạt động của fish collagen
Chức năng chính của fish collagen là kết nối các mô trong cơ thể lại với nhau. Fish collagen là yếu tố cần thiết trong quá trình tạo ra các axit amin cần thiết cho sức khỏe của làn da, mái tóc, móng tay, khớp xương và các mô khác trên cơ thể người.
Fish collagen mang lại hiệu quả cao đối với làn da con người bởi khả năng hồi phục và tái tạo da, duy trì sự đàn hồi cho da, chống lão hóa.
Insulin Pork là gì?
Insulin là hormone từ các tế bào đảo tụy ở tuyến tụy tiết ra. Insulin được tạo ra bằng cách phân lập tuyến tụy của động vật như bò và lợn từ những năm 1920-1980. Insulin người và lợn có sự khác biệt trong thành phần amino acid. Khi dùng insulin có nguồn gốc từ lợn đã gây ra một số tác dụng phụ. Quá trình sản xuất và làm tinh khiết insulin giai đoạn đó còn gặp nhiều khó khăn.
Công ty Genetech (Hoa Kỳ) đã sản xuất insulin bằng kỹ thuật di truyền đầu tiên vào năm 1982. Đây là lần đầu tiên các nhà nghiên cứu ứng dụng công nghệ sinh học vào dược phẩm thành công và sản phẩm được đưa ra thị trường.
Insulin chuyển hóa các chất carbohydrate trong cơ thể, insulin tác dụng đến việc chuyển hóa gan và các mô mỡ thành năng lượng ATP cung cấp cho hoạt động cơ thể. Insulin tổng hợp ở tế bào beta trong đảo tụy từ bộ máy tổng hợp protein trong tế bào, và có thể làm giảm nồng độ glucose trong máu.
Điều chế sản xuất
Các nhà nghiên cứu lần đầu tiên đã ứng dụng công nghệ sinh học vào dược phẩm thành công là năm 1982. Sản phẩm insulin là của Công ty Genetech được sản xuất bằng kỹ thuật di truyền đầu tiên.
Người ta dùng kỹ thuật tái tổ hợp AND chuyển gen mã hóa insulin vào tế bào vi khuẩn, E.coli sẽ sinh tổng hợp tạo ra loại peptit khi được nuôi cấy trong môi trường thích hợp.
Sản xuất theo quy trình sau: Cần chuẩn bị đoạn oligonucleotide mã hóa cho insulin: Theo trình tự cấu trúc các amino acid của insulin, có 2 chuỗi polypeptid A và B nối với nhau bằng hai cầu disulfur và 51 amino acid. Người ta đã mã hoá cho hai chuỗi A, B và tạo dòng gen tách biệt.

Phương pháp dùng plasmid của vi khuẩn hay nấm men, bằng enzyme hạn chế cắt plasmid. Nối đoạn gen mã hóa cho insulin tạo vector tái tổ hợp (pBR322), chuyển vector pBR322 vào vi khuẩn E.coli.
Vi khuẩn E.coli được lên men ở môi trường phù hợp, tách chiết thu được sản phẩm là polypeptid A và B. Trộn hai loại peptid bằng phương pháp hóa học enzym để xử lý để tạo cầu disulfur.
Cơ chế hoạt động
Insulin cần được gắn vào tế bào đích thông qua thụ cảm thể (receptor) của insulin trên bề mặt tế bào để phát huy tác dụng.
Dipotassium Glycyrrhizate là gì?
Dipotassium glycyrrhizate (DPG) là muối kali của acid glycyrrhizic (glycyrrhizin) – thành phần chính trong chiết xuất rễ cây cam thảo Glycyrrhiza glabra, họ đậu Fabaceae.
Trong mỹ phẩm và các sản phẩm chăm sóc cá nhân, các nhà sản xuất đã đưa vào Dipotassium glycyrrhizate nhằm mục đích nuôi dưỡng, kháng viêm và làm dịu da, đồng thời cũng là chất nhũ hóa và tạo gel cho sản phẩm. Dipotassium Glycyrrhizate có tác dụng dưỡng da, giúp làm dịu làn da bị kích ứng và hỗ trợ cải thiện kết cấu công thức.

Dipotassium Glycyrrhizate phù hợp với mọi loại da, trừ những người được xác định là dị ứng với nó. Tuy nhiên, nhược điểm của Dipotassium glycyrrhizate là không được hấp thụ tốt vào da.
Bên cạnh đó, từ hàng nghìn năm trước, chiết xuất rễ cây cam thảo đã được sử dụng trong y học cổ truyền Trung Quốc với công dụng nổi tiếng là làm dịu vùng mô bị viêm cũng như hỗ trợ loại bỏ đờm và chất nhầy ra khỏi đường hô hấp. Do đó, cam thảo có thể chữa được mọi thứ từ cảm lạnh thông thường cho đến bệnh gan.
Điều chế sản xuất Dipotassium Glycyrrhizate
Dipotassium Glycyrrhizinate là hoạt chất tinh chế từ rễ cam thảo, dạng bột, tan nước có khả năng kháng viêm tốt. Nhiều người sẽ lầm tưởng bột cam thảo nào cũng có tác dụng kháng viêm và giảm kích ứng tốt như nhau nhưng Dipotassium Glycyrrhizinate là thành phần chiết xuất đặc biệt của cam thảo, chỉ lấy những phần cần thiết trong cam thảo để phục vụ mục đích kháng viêm, kháng khuẩn, làm trắng và chống kích ứng da thôi, nên hiệu quả nó vượt trội so với bột cam thảo hay nước chiết xuất cam thảo bình thường.

Cơ chế hoạt động của Dipotassium Glycyrrhizate
Dipotassium Glycyrrhizinate là một chất chống viêm được sử dụng rộng rãi được phân lập từ rễ cây cam thảo. Nó được chuyển hóa thành Glycyrhetinic Acid, ức chế 11-beta-Hydroxysteroid Dehydrogenases và các enzym khác liên quan đến quá trình chuyển hóa Corticosteroids.
Dipotassium Glycyrrhizinate có khả năng làm sáng da đáng kể nhờ vào việc ức chế sắc tố, phân tán melanin, ức chế sinh tổng hợp melanin và ức chế enzym cyclooxygenase. Nói dễ hiểu thì Dipotassium Glycyrrhizinate ức chế không cho melanin di chuyển và xuất hiện trên bề mặt da.
Ethylparaben là gì?
Ethylparaben là este ethyl của axit p-hydroxybenzoic. Ethylparaben là một trong những chất thuộc nhóm các hợp chất gọi là paraben (cùng methylparaben, butylparaben, isobutylparaben và propylparaben).

Paraben từng được dùng phổ biến trong công thức của các sản phẩm mỹ phẩm với vai trò của một chất bảo quản. So với các chất bảo quản khác, paraben được ưa chuộng bởi tính chất nhẹ nhàng, không nhạy cảm và hiệu quả cao của nó.
Ngoài ra, paraben nói chung, Ethylparaben nói riêng có nguồn gốc tự nhiên từ thực vật dưới dạng axit p-hydroxybenzoic (PHBA). Trên thực tế, paraben được sử dụng trong mỹ phẩm giống hệt với những chất có trong tự nhiên. Nếu paraben được hấp thụ qua da, cơ thể con người có thể nhanh chóng chuyển hóa chúng thành PHBA và loại bỏ chúng.

Tuy nhiên, thời gian qua, có nhiều ý kiến tranh cãi xung quanh việc sử dụng paraben do nhóm các hợp chất này bị cáo buộc liên quan đến các vấn đề sức khỏe.
Hydrogenated Coco-glycerides là gì?

Hydrogenated Coco-glyceride là một chất béo màu trắng, chứa các axit béo bão hòa (không có liên kết đôi), có nguồn gốc từ dầu dừa, độ dài chuỗi C12-C18. Chất này không mùi, có vị trung tính và khá cứng ở nhiệt độ phòng.
Dầu dừa (Cocos nucifera) là dầu từ trái dừa khô, bao gồm 90% chất béo trung tính bão hòa. Dầu dừa có thể hoạt động như một thành phần tạo hương thơm, chất dưỡng tóc hoặc chất dưỡng da và được báo cáo có mặt trong 626 mỹ phẩm ở nồng độ cho phép từ 0,0001% đến 70%.
Các thành phần liên quan của dầu dừa được đề cập trong báo cáo này gồm các axit béo và các dạng hydro hóa của chúng, các rượu béo tương ứng, các este đơn giản, các muối vô cơ và sulfat hóa.
Dầu dừa và các thành phần liên quan được xem là thành phần mỹ phẩm an toàn khi sử dụng với nồng độ cho phép.
Điều chế sản xuất
Hydrogenated Coco-glycerided là một hỗn hợp của Monoglyceride, Diglyceride và Triglyceride có nguồn gốc từ dầu dừa, được điều chế bằng cách thủy phân và cô lập chất béo, sau đó được chưng cất.
Dầu dừa được lấy từ cùi dừa (thịt khô hoặc nhân hạt dừa), với số lượng từ 60% đến 70%, có hàm lượng nước từ 4% đến 10%. Dầu dừa thô thu được thông qua biểu hiện cơ học của cùi dừa. Sau đó, dầu được tinh chế, tẩy trắng và khử mùi để loại bỏ các Axit béo tự do, Phospholipid, các thành phần màu, mùi, hương vị và các vật liệu Nonoil khác.
Clay (đất sét) là gì?
Con người đã dùng một trong số các loại clay (đất sét) như kaolin hoặc bentonite để làm mặt nạ. Đất sét xanh hoặc đất sét trắng thường được làm mặt nạ… Trong mặt nạ clay chứa nhiều vitamin và các khoáng chất tốt cho da như là canxi, magie, silica, đồng, sắt và kali.
Thông thường mặt nạ đất sét thường được sản xuất ở dạng bột, người sử dụng phải trộn đều với nước tạo thành hỗn hợp sệt bôi lên da. Để tiện dụng hơn, các công ty sản xuất ra nhiều sản phẩm dạng sệt như kem hoặc bùn có thể đắp trực tiếp lên da.

Với những ưu điểm chiết xuất từ thiên nhiên và hiệu quả lành tính đã thu hút người tiêu dùng. Clay kaolin với những tác dụng giảm dầu nhờn, giảm mụn hay giúp che khuyết điểm trên da rất được ưa chuộng.
Kaolin là kết quả của quá trình biến đổi tự nhiên của fenspat. Fenspat và các silicat khác thường được tìm thấy trong lớp trầm tích, chiếm phần lớn lượng khoáng chất và có phạm vi rộng. Nhóm chất này bao gồm những thành phần hóa học như sau: 8% Alumina, 46,3% silica và 13,9% nước.
Clay kaolin hay khoáng vật kaolin bắt nguồn từ từ Gaoling (Kao-Ling) – một ngọn đồi ở Trung Quốc (thị trấn Cảnh Đức, Tỉnh Giang Tây, TQ), được ghi nhận lần đầu tiên vào năm 1867 tại Brazil.
Ngày nay, kaolin còn được tìm thấy ở nhiều nơi như châu Mỹ như Brazil, Hoa Kỳ, châu Âu như Đức, Pháp, Anh, hay châu Á như Ấn Độ, Hàn Quốc…
Clay thường được tìm thấy ở vùng có khí hậu nóng ẩm, rừng mưa nhiệt đới, chịu ảnh hưởng rất lớn bởi nhiệt độ. Yếu tố thời tiết quyết định đến loại kaolin được hình thành, và được phân chia thành nhiều loại khác nhau.
Kaolin trắng sẽ hình thành trong điều kiện đất mềm, kết quả của quá trình hóa hóa học của các khoáng chất silicat nhôm như fenspat. Tác dụng của lượng oxit sắt sẽ làm biến đổi màu sắc của Kaolin nó sẽ tạo thành dải màu từ đỏ, hồng, cam, cam nhạt và vàng.
Điều chế sản xuất
Người ta điều chế clay bằng cách nghiền thành bột có kích thước từ 325mesh trở xuống. Đem trộn bột, nước và chất phân tán làm cho nó thành 4500 - 6000mesh. Lấy bùn siêu mịn sấy khô và đánh tan, rồi nung thêm 1 - 3% chất trắng trong tổng trọng lượng khi nung. Chất trắng được tạo ra bởi than, natri sunfat và natri clorua, theo trọng lượng hỗn hợp 10: 0,3: 0,2, nhiệt độ nung nên là 970℃ - 990℃.
Cơ chế hoạt động
Theo lý thuyết, clay mang các phân tử điện tích âm, bám vào các phân tử hoặc ion mang điện tích dương của độc tố và vi khuẩn hữu cơ, clay giúp đào thải độc tố ra khỏi cơ thể nên được dùng làm mặt nạ.
Sau khi đắp mặt nạ, da mặt căng lên khi khô, lúc này, bã nhờn thừa và bụi bẩn bị tắc nghẽn trong lỗ chân lông cũng bị hút lên trên bề mặt da. Sau khi đắp xong rửa trôi lớp mặt nạ, đồng thời sẽ rửa luôn các độc tố bị nó hút vào.
Choline là gì?
Choline là một hợp chất hữu cơ tan trong nước, có dạng hợp chất phosphatidycholine nên được tìm thấy trong những thực phẩm chứa chất béo. Choline không phải vitamin hay khoáng chất nhưng có liên quan đến các vitamin khác, cụ thể là folate và phức hợp vitamin B.
Trong cơ thể, choline là một vi chất thiết yếu cần thiết cho nhiều chức năng của cơ thể (hệ thống thần kinh, nội tiết, tiêu hóa và sinh sản,...), đặc biệt là chức năng não cũng như giữ cho sự trao đổi chất hoạt động bình thường.

Choline được sử dụng để tạo ra DNA, hỗ trợ tín hiệu thần kinh và giải độc. Nó cũng giúp dẫn truyền thần kinh và điều khiển cơ bắp. Giữ vai trò quan trọng như vậy nên việc thiếu hụt choline sẽ gây ảnh hưởng cho sức khỏe toàn diện. Dấu hiệu để một người nhận biết cơ thể đang có sự thiếu hụt choline bao gồm:
-
Mệt mỏi, mức năng lượng thấp;
-
Mất trí nhớ;
-
Suy giảm nhận thức;
-
Năng suất học tập kém;
-
Đau cơ;
-
Tổn thương thần kinh;
-
Thay đổi tâm trạng.
Cơ thể chúng ta có thể tự sản xuất choline nhưng là không đủ, thậm chí nhiều người đã bổ sung choline trong chế độ ăn bằng các nguồn thực phẩm giàu choline, tuy nhiên hàm lượng vẫn không đủ đáp ứng khuyến cáo hàng ngày. Điều này xuất phát từ việc một số choline không dễ dàng được hấp thụ. Do đó, ngoài thực phẩm, chúng ta có thể bổ sung choline qua các chế phẩm thực phẩm chức năng chứa choline.
Hiện vẫn chưa có con số chính xác cho biết nên dùng bao nhiêu choline mỗi ngày. Tuy nhiên, các chuyên gia hầu hết đều đồng ý với số lượng dưới đây là đủ để tạo ra lợi ích tối ưu mà không gây hại:
-
Trẻ sơ sinh: 125–150mg;
-
Trẻ em tuổi từ 1-8: 150–250mg;
-
Thiếu niên tuổi từ 8-13: 250–375mg;
-
Nữ giới trên 14 tuổi: 425–550mg;
-
Nam giới trên 14 tuổi: 550mg;
-
Phụ nữ có thai: 450–550mg;
-
Phụ nữ đang cho con bú: 550mg.
Những loại thực phẩm sau đây cung cấp hàm lượng choline cao nhất, đồng thời còn có nhiều chất dinh dưỡng khác: Gan bò, cá hồi, đậu gà, đậu hạt, đậu xanh, đậu nành, trứng, thịt bò, gà tây, ức gà, súp lơ, sữa dê, cải Brussels…

Một số báo cáo cho thấy, choline trong thực phẩm khó được cơ thể hấp thu ngay cả khi ăn chế độ thực phẩm đa dạng. Một số người dù đã tích cực bổ sung choline qua thực phẩm nhưng cơ thể vẫn bị thiếu choline, nhất là với người bị tổn thương gan, uống nhiều rượu bia hay béo phì, đái tháo đường.
Lúc này, bạn có thể choline bằng thực phẩm chức năng sẽ giúp cơ thể bạn dễ dàng hấp thu choline hơn.
Acid chlorogenic là gì?
Acid chlorogenic là một sản phẩm tự nhiên phenolic, thành phần này được phân lập từ trái và lá của cây dicotyledonous, hạt cà phê, ulmoides eucommia, cây kim ngân hoa. Cấu trúc của thành phần axit chlorogenic là este của axit caffeic với nhóm axit quinic 3-hydroxyl, là một hợp chất phenolic chính trong cà phê xanh. Từ lâu hợp chất này được gọi là chất chống oxy hóa, làm chậm quá trình giải phóng glucose vào máu sau khi ăn.

Chlorogenic acid là một trong những nguyên nhân gây ra vị đắng trong cà phê, nó còn nhiều điều liên quan đến sức khỏe của chúng ta.
Trong quá trình rang cà phê, do thay đổi nhiệt hình thành lactones chlorogenic góp phần nâng cao vị đắng. Nếu hàm lượng chlorogenic acid trong cà phê xanh cao tạo nên mùi không mong muốn của cà phê, vì trong quá trình rang các chất tạo thành oxy hóa.
Điều chế sản xuất
Có một số nghiên cứu tại Việt Nam về tách chiết acid chlorogenic từ cà phê nhân (cà phê xanh) tuy nhiên còn nhỏ lẻ chưa được đưa vào sản xuất. Đây là hướng nghiên cứu mới về thu nhận acid chlorogenic dùng sản xuất thực phẩm chức năng từ cà phê nhân. Ở Việt Nam có thế mạnh về nguyên liệu cà phê. Nhu cầu sử dụng thực phẩm chức năng trong phòng tránh nguy cơ béo phì cũng khá lớn. Vì vậy nhu cầu phát triển sản phẩm đặc biệt này là cấp bách. Vì vậy, đề tài xây dựng quy trình công nghệ, mô hình thiết bị để sản xuất acid chlorogenic từ hạt cà phê xanh bằng công nghệ lên men được quan tâm. Từ đó đưa ứng dụng này sản xuất thực phẩm chức năng, đẩy mạnh kinh tế và đa dạng hóa sản phẩm từ cà phê, nguồn nguyên liệu phong phú của Việt Nam.
Quy trình công nghệ tách chiết, thu nhận acid chlorogenic từ hạt cà phê xanh đã được xây dựng với độ tinh sạch 90%, hiệu suất đạt 1,2%. Mô hình công nghệ, thiết bị sản xuất acid chlorogenic phòng thí nghiệm quy mô 5kg nguyên liệu/mẻ và quy mô 300kg nguyên liệu/mẻ đã được xây dựng.
Cơ chế hoạt động
Acid chlorogenic là sản phẩm của acid caffeic, hay chính xác hơn là este của nó, cũng chứa đồng phân lập thể của acid quinic. Thành phần này được chiết xuất từ cà phê xanh bằng cách sử dụng ethanol. Acid chlorogenic cũng có thể được tổng hợp từ cinnamic và acid quinic.
Sản phẩm liên quan








